A2M

Does a Fibronectin and Aggrecan Complex Play a Role in Painful Vertebral Disks?
INTRODUCTION

Debilitating low back pain (LBP) is a ubiquitous problem in industrialized countries and is associated with enormous morbidity and costs that continue to increase [1]. Although surgical treatment of axial LBP allows some patients to return to their normal activities of daily living, it continues to have great limitations and high failure rates [2-5]. The most challenging aspect of surgical treatment for LBP that health care providers face is selecting persons for whom surgical treatment is most likely to be efficacious. To that end, provocative diskography has been purported as beneficial [6]. Diskography has been used as an adjunct to magnetic resonance imaging (MRI), which is commonly used by physicians to help identify an underlying source of back pain; however, studies suggest that diskography and MRI are at best modestly predictive of outcomes after interventions directed at suspected “diskogenic” pain [6]. Moreover, recent work has cast a shadow on the use of diskography because accelerated degeneration and increased morbidity have been described [7].

A potential molecular marker of connective tissue (ie, intervertebral disk) degeneration that is correlated with the painful state causing radiculopathy from nerve root irritation in persons with degenerative diseases of the spine has been identified [8-10]. Moreover, this marker is predictive of functional improvement after a lumbar epidural steroid injection is prescribed [7].

Does a Fibronectin and Aggrecan Complex Play a Role in Painful Vertebral Disks?

Jason M. Cuellar, MD, PhD, S. Raymond Golish, MD, PhD, Eric J. Leroux, MD, Merrill W. Reuter, MD, PhD, Eugene J. Carragee, MD, Lewis S. Hanna, PhD, Gaetano J. Scuderi, MD

Objective: To determine the presence of a fibronectin-aggrecan complex (FAC) in the disk space of persons with chronic low back pain as relates to provocative diskography.

Design: A single-center prospective consecutive case series.

Setting: A single private practice setting.

Patients: Thirty-seven patients with symptomatic degenerative disk disease of the cervical, thoracic, or lumbar spine undergoing provocative diskography to identify a source of pain.

Methods: Diskographic lavage for analysis was simultaneously performed at each disk level injected during diskography.

Main Outcome Measures: Visual analog scale (VAS) pain scores, Pfirrmann magnetic resonance imaging grade, and biochemical analysis of disk material were statistically analyzed.

Results: A total of 105 levels in 37 patients had a complete set of data (mean age 43.2 ± 11.9 years; 15 male/22 female). The FAC was present in 43 of 108 levels and in at least one level in 25 of 37 patients. The Pfirrmann magnetic resonance imaging grade did not differ between complex-positive and negative levels (P = .125), nor did the intraoperative VAS (IO-VAS) score for pain by level (P = .206). A significant but loose correlation was found between Pfirrmann grade and IO-VAS ($R^2 = 0.4, P < .001$), but no significant correlation was found between VAS or IO-VAS and complex concentration ($R^2 = 0.08, P = .11$ and $R^2 = 0.003, P = .5$).

Conclusions: The FAC was identified in some painful disks by diskography. There was no significant correlation between the Pfirrmann grade or pre/intraoperative pain scores during diskography and complex concentrations within the disk measured by disk lavage.
administered. In the present study, we sought to identify the presence of this fibronectin-aggrecan complex (FAC) in persons with chronic low back pain syndromes.

Protein biomarkers associated with lumbar disk disease have been studied as diagnostic indicators and therapeutic targets. A complex molecular and cellular cascade of disk degeneration is being elucidated, which involves inflammatory mediators (e.g., cytokines, nitric oxide, and signal transduction pathways), structural proteins and their degradation fragments (e.g., fibronectin, aggrecan, and collagens), and proteases/protease inhibitors (e.g., matrix metalloproteinases and aggrecanases) [11-15]. Numerous disease-modifying therapies have been proposed to intervene in this cascade, including antibody [16], stem cell [11], and gene [17] therapies, but their efficacy remains unproven.

The relationship among inflammatory cytokines and structural matrix proteins such as aggrecan and fibronectin in the pathophysiology of degenerative joint diseases, although well established, continues to be clarified. Inflammatory cytokines are associated with fibronectin and its fragments in degenerative disease of the intervertebral disk [18] and synovial joints [19]. Aggrecan and its fragments also have been implicated in degenerative disease of the intervertebral disk [20], as have aggrecanases [21] and tissue inhibitors of metalloproteinases [22].

In synovial joints, aggrecan cleavage is associated with fibronectin fragments [19]. Furthermore, there is apparent cross-immunoreactivity between interferon-gamma and the complex of fibronectin and aggrecan in some commercial antibodies [9]. Moreover, it was recently reported that lavage fluid from the epidural space that demonstrates the presence of the FAC is significantly correlated with pain relief after epidural steroid injections for the treatment of radiculopathy with herniated nucleus pulposus [23]. These observations suggest a possible role for FAC in the pathophysiology of connective tissue degeneration and may aid in the selection of disks to treat in persons with LBP. To further elucidate the role of FAC in persons with painful degenerative disk disease, a comprehensive study including follow-up of persons with chronic LBP (CLBP) in whom the FAC is identified in select disks needs to be undertaken.

We measured levels of this protein complex in the disk spaces of patients undergoing lumbar diskography for CLBP refractory to conservative treatment. Our objective was to determine whether this marker was present in all degenerative disks or identified only in select disks, such as those with high-grade degeneration.

MATERIALS AND METHODS

Subjects

Independent Institutional Review Board approval was obtained (Sterling, Inc., Atlanta, GA), and all patients provided informed consent for study participation. Patients considered candidates for provocative diskography were between 21 and 75 years of age with a history of CLBP of 6 months or longer and had failed to reasonably improve with treatment, including nonsteroidal anti-inflammatory drugs, activity modification, and/or physical therapy. The patients were identified among 119 consecutive patients who were offered diskography for the evaluation of their chronic pain (study group). This cohort was drawn from the practice of a single board-certified orthopedic spine surgeon (G.J.S.) from January 2008 to May 2009.

Patients with a history of oral or injected corticosteroid medication use within a 3-month period before diskography, patients who had previously undergone diskography, and patients with chronic medical conditions associated with metabolic or inflammatory disorders (e.g., insulin-dependent diabetes mellitus, severe coronary artery disease, or rheumatic or autoimmune diseases) were excluded from the study.

Demographic information, including gender, age, insurance, work status, and reported pain on a 0 to 10 visual analog scale (VAS), was obtained before the procedure. Provocative diskography, with recording of anular disruption, pain intensity during the procedure (i.e., intraoperative VAS [IO-VAS] score), and concordance for each disk injected was performed by an experienced diskographer (M.R.). A blinded analysis of MRI was performed by an experienced, independent examiner (G.J.S.), with each injected disk level classified according to the Pfirrmann grading scale (Table 1) [24].

Table 1. Breakdown of study disks by Pfirrmann grade

<table>
<thead>
<tr>
<th>Pfirrmann Grade</th>
<th>Description of Grade</th>
<th>No. (%) of Disks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Homogeneous, bright white</td>
<td>13 (12.4)</td>
</tr>
<tr>
<td>II</td>
<td>Inhomogeneous with or without horizontal bands</td>
<td>34 (32.4)</td>
</tr>
<tr>
<td>III</td>
<td>Inhomogeneous, gray</td>
<td>31 (29.5)</td>
</tr>
<tr>
<td>IV</td>
<td>Inhomogeneous, gray to black</td>
<td>18 (17.1)</td>
</tr>
<tr>
<td>V</td>
<td>Inhomogeneous, black, collapsed disc space</td>
<td>9 (8.6)</td>
</tr>
<tr>
<td>Grand total</td>
<td></td>
<td>105 (100)</td>
</tr>
</tbody>
</table>

Sample Acquisition, Storage, and Preparation

At the time of diskography, lavage was undertaken before injection as previously described [10,25]. In summary, the patient was positioned prone on a radiolucent table, and monitored anesthesia was induced. After preparation with 1% povidone iodine, a 22-gauge spinal needle was placed into the disk space with the use of C-arm fluoroscopy in multiple planes. Lavage was undertaken by injection and aspiration of 1-2 mL of 0.9% normal saline solution without preservative with use of a 3-mL syringe. The lavage fluid was
Table 2. Study population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N or Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>15</td>
</tr>
<tr>
<td>Females</td>
<td>22</td>
</tr>
<tr>
<td>Age</td>
<td>43.2 ± 11.9</td>
</tr>
<tr>
<td>VAS</td>
<td>8.0 ± 1.3</td>
</tr>
<tr>
<td>IO-VAS</td>
<td>4.3 ± 3.3</td>
</tr>
</tbody>
</table>

IO-VAS = intraoperative visual analog score for pain; VAS = visual analog score for pain (preoperative).

Table 3. Sample site and presence of complex

<table>
<thead>
<tr>
<th>Level</th>
<th>No. of Samples</th>
<th>Average FAC Concentration ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/2</td>
<td>6</td>
<td>0.010 ± 0.005</td>
</tr>
<tr>
<td>L2/3</td>
<td>12</td>
<td>0.058 ± 0.132</td>
</tr>
<tr>
<td>L3/4</td>
<td>29</td>
<td>0.070 ± 0.153</td>
</tr>
<tr>
<td>L4/5</td>
<td>31</td>
<td>0.100 ± 0.209</td>
</tr>
<tr>
<td>L5/S1</td>
<td>27</td>
<td>0.150 ± 0.442</td>
</tr>
<tr>
<td>Grand total</td>
<td>105</td>
<td>0.095 ± 0.270</td>
</tr>
</tbody>
</table>

FAC = fibronectin-aggrecan complex (concentration is measured in optical density units); L = lumbar; S = sacral.

Table 4. FAC concentration at different Pfirrmann scores

<table>
<thead>
<tr>
<th>Pfirrmann</th>
<th>Female</th>
<th>Male</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.060 ± 0.121</td>
<td>0.055 ± 0.082</td>
<td>0.058 ± 0.100</td>
</tr>
<tr>
<td>2</td>
<td>0.066 ± 0.166</td>
<td>0.034 ± 0.074</td>
<td>0.055 ± 0.140</td>
</tr>
<tr>
<td>3</td>
<td>0.148 ± 0.566</td>
<td>0.090 ± 0.180</td>
<td>0.120 ± 0.420</td>
</tr>
<tr>
<td>4</td>
<td>0.128 ± 0.260</td>
<td>0.232 ± 0.240</td>
<td>0.180 ± 0.249</td>
</tr>
<tr>
<td>5</td>
<td>0.072 ± 0.099</td>
<td>0.010 ± 0.016</td>
<td>0.046 ± 0.077</td>
</tr>
<tr>
<td>Grand total</td>
<td>0.103 ± 0.353</td>
<td>0.090 ± 0.167</td>
<td>0.095 ± 0.270</td>
</tr>
</tbody>
</table>

FAC = fibronectin-aggrecan complex (concentration is measured in optical density units).

Table 5. FAC positivity by Pfirrmann grouping (high 3-5, low 1-2)*

<table>
<thead>
<tr>
<th>FAC-Negative</th>
<th>FAC-Positive</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfirrmann 3-5</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Pfirrmann 1-2</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Grand total</td>
<td>62</td>
<td>43</td>
</tr>
</tbody>
</table>

FAC = fibronectin-aggrecan complex.
*There was a trend for greater FAC concentration in disks with a Pfirrmann score of 3 or 4, but this finding did not reach statistical significance (P = .09).

RESULTS

Thirty-seven patients (15 men and 22 women with a mean age of 43 ± 12 years) were enrolled from January 2008 to May 2009 (Table 2). Tables 1 and 3 provide a breakdown of patient population by Pfirrmann grade and intervertebral disk level. Use of diskography was determined by the physician and performed in a range of 1 to 4 disks in each patient. The FAC was present in 43 of 105 disks and in at least one level in 25 of 37 patients. The FAC concentration from disks with different Pfirrmann scores are presented in Table 4. The Pfirrmann MRI grade did not differ between FAC-positive and FAC-negative levels (P = .125), nor did the IO-VAS differ by level (P = .206). A trend was
noted for greater FAC concentration in disks with a Pfirrmann score of 3 or 4, but this trend did not reach statistical significance ($P = .09$; Table 5 and Figures 1 and 2) when all disks were included in the analysis. FAC-positive disks with a Pfirrmann score of 3 or 4 had an average greater FAC level compared with positive disks with a Pfirrmann score of 1, 2, or 5 (mean 0.32 versus 0.14; $P = .05$). A statistically significant ($P < .001$) but weak correlation ($R^2 = 0.4$) was found between Pfirrmann grade and IO-VAS, but no significant correlation was found between VAS or IO-VAS and complex concentration ($R^2 = 0.08, P = .11$, and $R^2 = 0.03, P = .07$, respectively).

DISCUSSION

The present study demonstrates that FAC does exhibit a presence in disk lavage fluid of a majority of patients with CLBP, as predicted by recent studies [8,9,26]. However, there was no significant correlation with prediskography or intradiskography pain scores or Pfirrmann MRI grades to the presence of the protein complex. This finding differs from that of a previous study in which patients with suspected spinal nerve root irritation were examined with use of epidural lavage [23] and could reflect either a difference between the intradiskal space compared with the epidural space or the patient population. The differing finding also might reflect the inherent challenges in the interpretation of provocative diskography, a modality well known to be problematic in its clinical reliability in patients with CLBP [27-29].

The observation in the present study that FAC was not detected in all degenerative disks is contrary to growing evidence that inflammatory cytokines are associated with fibronectin, fibronectin fragments, aggregcanases, and aggregcan fragmentation in degenerative disease of the intervertebral disk [13,14,18]. Several possible explanations exist for the large percentage of degenerative disks with a negative FAC test. Performing diskography at the wrong level is one possibility. It has been shown that each disk annulus and endplate receive multisegmental innervation from both the recurrent branch of the ventral primary ramus of the spinal nerve (sinuvertebral nerve) and the paravertebral sympathetic trunk [30-32]. For example, studies in animals have demonstrated that the L5-L6 disk is innervated via the sinuvertebral nerves from dorsal root ganglia (DRG) L3-L5 and via the sympathetic trunk by DRG T13-L2 [33-35]. Contralateral DRG involvement also occurs via both pathways [36,37]. These observations may explain the relatively diffuse spread of axial spinal pain and difficulty in the accurate localization of pain and the pain-generating disk.

Another distinct possibility is dilution of the small amount of FAC to levels below the assay’s level of detection, which might occur because of the small aspirate volumes achieved

![Figure 1](image1.png)

Figure 1. The average concentration (reported as optical density units) of the fibronectin-aggrecan complex (FAC) is plotted in relative absorption units measured by custom enzyme-linked immunosorbent assay for each group of disks, organized by Pfirrmann grade (error bars represent standard error of the mean). This figure reports averages for all study disks. There was a trend for greater FAC concentration in disks with a Pfirrmann score of 3 or 4, but this finding did not reach statistical significance ($P = .09$) when all disks were included in the analysis.

![Figure 2](image2.png)

Figure 2. The average concentration (reported as optical density units) of the fibronectin-aggrecan complex (FAC) is plotted in relative absorption units measured by custom enzyme-linked immunosorbent assay for each group of disks, organized by Pfirrmann grade (error bars represent standard error of the mean). This figure reports averages for only the disks that were positive for FAC. FAC-positive disks with a Pfirrmann score of 3 or 4 had an average greater FAC level compared with positive disks with a Pfirrmann score of 1, 2, or 5 (mean 0.32 versus 0.14; $P < .05$).
during diskography, a factor that is difficult to avoid with the current technique. Furthermore, it is possible that severely degenerated disks are “burned out,” that is, desiccated to such an extent that minimal levels of collagen and byproducts of disk degeneration remain. The present study provides some support for this explanation, given the observed trend of greater FAC concentrations in Pfirrmann 3-4 disks and lower levels in Pfirrmann 5 disks.

The present investigation has some noteworthy shortcomings. The diskographic lavage technique may result in a small volume of aspirate after injection/aspiration of a variable amount of diluents [25]. This factor, in conjunction with the biology of the disease process, may result in a wide range of concentrations for biomarkers assayed, requiring a sensitive assay and inducing floor or ceiling effects typical of immunoassays [8]. In the present study, these issues are addressed with the use of a sensitive heterogeneous ELISA, although the lack of a synthesizable positive control makes absolute quantification impossible. A reference standard and positive control for the FAC must be synthesized in large scale to generate a standard curve by which the OD (at 450 nm optical wavelength) can be converted to an absolute concentration. In addition, different values for the limit of detection would yield different estimates of positive versus negative test values. Although there was a variable amount of time from sample collection to analysis that was unavoidable, our laboratory has performed stability studies demonstrating no decrement in ELISA signal at up to 1 year.

Furthermore, the present study likely had an inclusion bias in that all of the subjects were scheduled for provocative diskography, and thus an uncertainty in the diagnosis may have been more likely than in a study conducted with surgical patients only. The patients in this study likely represent the cohort of patients that is most difficult to treat — those with CLBP of uncertain origin.

CONCLUSION

A novel protein-protein complex, the FAC, was identified in some painful disks by diskography. Although a trend toward greater FAC levels in Pfirrmann 3 and 4 grade disks was noted, no significant correlation between VAS or IO-VAS and complex concentration was found. A biomarker present in specific disks in patients experiencing debilitating CLBP could improve our understanding of the pathophysiology of CLBP and lead to vastly improved therapeutic decision making and possibly even more targeted therapeutics, although additional investigation is needed to reach this goal.

ACKNOWLEDGMENTS

We thank Katie Dent and Naruewan Woolf for their assistance in the sample processing.

REFERENCES

This CME activity is designated for 1.0 AMA PRA Category 1 Credit™ and can be completed online at me.aapmr.org. Log on to www.me.aapmr.org, go to Lifelong Learning (CME) and select Journal-based CME from the drop down menu. This activity is FREE to AAPM&R members and $25 for non-members.

CME Question

Intradiscal fibronectin-aggrecan complex (FAC) concentration weakly correlated with:

a. level of lumbar disk sampled
b. pre-discography pain level
c. advanced subject age
d. degenerative disk grade

Answer online at me.aapmr.org
The content provided in this white paper is intended solely for general information purposes, and is provided with the understanding that the authors and publishers are not herein engaged in rendering medical, clinical or other professional advice or services. The information in this report is intended to help health care decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Consequently, any use of this information should be done only in consultation with a qualified and licensed professional who can take into account all relevant factors and desired outcomes. The information in the following white paper was written, prepared and distributed with reasonable care and attention. However, it is possible that some information in the following white paper is incomplete, incorrect, or inapplicable to particular circumstances or conditions. We do not accept liability for direct or indirect losses resulting from using, relying or acting upon information in the following white paper.